I-37: Establishing High Resolution Genomic Profiles of Single Cells Using Microarray and Next-Generation Sequencing Technologies

نویسنده

  • Voet Th
چکیده مقاله:

The nature and pace of genome mutation is largely unknown. Standard methods to investigate DNA-mutation rely on arraying or sequencing DNA from a population of cells, hence the genetic composition of individual cells is lost and de novo mutation in cell(s) is concealed within the bulk signal. We developed methods based on (SNP-) arraying and next-generation sequencing of single-cell whole-genome amplifications that enable the detection of DNA-copy number variants with unprecedented accuracy and reliability, profiling the architecture of structural variants, as well as genotyping a single cell to the DNAbasepair level. These methods will expedite novel applications in basic genome research and clinical practice.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative analysis of Lactobacillus plantarum WCFS1 transcriptomes by using DNA microarray and next-generation sequencing technologies.

RNA sequencing is starting to compete with the use of DNA microarrays for transcription analysis in eukaryotes as well as in prokaryotes. The application of RNA sequencing in prokaryotes requires additional steps in the RNA preparation procedure to increase the relative abundance of mRNA and cannot employ the poly(T)-primed approach in cDNA synthesis. In this study, we aimed to validate the use...

متن کامل

Strategies and Clinical Applications of Next Generation Sequencing

Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput se­quencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...

متن کامل

High-resolution, high-throughput HLA genotyping by next-generation sequencing.

The human leukocyte antigen (HLA) class I and class II loci are the most polymorphic genes in the human genome. Hematopoietic stem cell transplantation requires allele-level HLA typing at multiple loci to select the best matched unrelated donors for recipient patients. In current methods for HLA typing, both alleles of a heterozygote are amplified and typed or sequenced simultaneously, often ma...

متن کامل

Strategies and Clinical Applications of Next Generation Sequencing

Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput se­quencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...

متن کامل

Next generation sequencing technologies for next generation plant breeding

As a term, “next generation plant breeding” is increasingly becoming popular in crop breeding programmes, conferences, scientific fora and social media (Schnable, 2013). Being a frontier area of crop science and business, it is gaining considerable interest among scientific community and policymakers and funds flow from entrepreneurs and research funding agencies. Plant breeding is a continuous...

متن کامل

Algorithms for Next-Generation High-Throughput Sequencing Technologies

Algorithms for Next-Generation High-Throughput Sequencing Technologies

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 6  شماره 2

صفحات  -

تاریخ انتشار 2012-09-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023